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Abstract 

Color groups provide a partial classification of colored 
objects, but the coloring problem is much more 
complex. In this paper, criteria are established for 
determining whether a transitive pattern can be 
consistently colored with each pattern unit receiving a 
single color, and for calculating the number of such 
colorings. The colorings of the face-transitive poly- 
hedra (a class which includes the simple crystal forms) 
are enumerated. 

Introduction 

In 1951, A. V. Shubnikov proposed a theory of color 
symmetry to solve the problem of coloring the faces of 
finite figures, such as polyhedra, with two colors, 
'black' and 'white'. Each symmetry operation of the 
figure was associated with a unique color permutation 
[that is, either it mapped all the black faces onto white 
ones, and vice versa, or else it mapped each face onto a 
face of the same color (Fig. 1)]. In some cases this 
requirement, later called consistency by Loeb (1971), 
forced both colors to be assigned to certain faces; these 
faces were then considered to be 'neutral' or 'gray'. To 
handle this, Shubnikov proposed an 'anti-identity' 
operation. Alternatively, the gray faces could be 

* A preliminary version of this paper was presented to the XII 
Congress and General Assembly of the International Union of 
Crystallography in Ottawa, Canada, August 1981 (Senechal, 
1981). 

subdivided into black and white sectors (Fig. 2). In the 
subsequent extension of the theory from two to an 
arbitrary number k of colors, the latter approach has 
generally predominated, since it fits in well with the van 
der Waerden-Burckhardt (1961) theory in which a 
k-color group G(H) is determined by a subgroup H of 
index k in the symmetry group G. 

The theory of color groups has developed rapidly in 
recent years, but in the meantime the problem of 
finding the ways in which patterns can be consistently 
colored with a single color assigned to each motif 
seems to have been ignored. It should be stressed that 
even consistently colored objects cannot be completely 
described or classified by color groups. On the one 
hand, as we have pointed out, not every object can be a 
realization of every color group associated with its 
symmetry group, unless we adopt the rather artificial 
strategy of subdivision. Thus, while Fig. 1 shows a 
satisfactory coloring of the faces of an octahedron, the 

. . . . . . . . . . . . . . . . . . . . .  

Fig. 1. The faces of the octahedron can be colored with two colors 
in such a way that each symmetry operation maps all faces of 
one color onto faces of the other color, or maps each set of 
single-colored faces onto itself. 

Fig. 2. In every consistent coloring of the faces of the cube with two colors, both colors must appear on each face. 
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diagrams in Fig. 2 may be unsatisfactory for some 
purposes. Another example is shown in Fig. 3, which 
includes two different representations of the plane 
group p6m as a discrete set of points. The group p6m 
has a subgroup of index 2 of type p6, and this pair 
defines a two-color group. But only the representation 
(b) admits a coloring described by it. Indeed, no 
subgroup of p6m defines a consistent two-coloring of 
(a). (Dividing the points of a pattern into asymmetric 
regions is even less satisfactory than subdividing the 
faces of a polyhedron.) On the other hand, when a 
pattern does admit a color group, the coloring can often 
be realized in more than one way. Consider the two 
colorings of p4m shown in Fig. 4. Both are described 
by the same color group but in what other sense can 
they represent the same physical structure? As a final 
example, we consider the colorings of the pyritohedron 
(symmetry group m3) associated with one of its three 
subgroups of type mm2. Since this subgroup is of index 
6, k = 6, and there are six colors. The three 
inequivalent colorings of the asymmetric regions of the 
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Fig. 3. In (a) and (b) we see two representations of p6m as a 
discrete set of points. Only (b) admits a coloring with two colors. 

faces of the pyritohedron are shown in Fig. 5. We see 
that in (a) and (b) the faces each have one color but in 
(c) they have two. Further, the colorings in (a) and (b) 
cannot be considered equivalent, since in (a) each face 
is adjacent to one of the same color but in (b) no two 
faces of the same color are adjacent. The physical 
properties of two crystals represented by these color- 
ings will certainly be different. 

The purpose of this paper is to find criteria for 
predicting and distinguishing among the colorings in 
such figures and to enumerate the consistent colorings 
of face-transitive polyhedra. Although our results apply 
to infinite plane and three-dimensional patterns as well 
as to polyhedra, we restrict our attention to the latter. 
First we briefly review the theory of color groups. Then 
we show how the face-transitive polyhedra can be 
classified by symmetry type, and prove that this 
classification is the appropriate one for coloring 
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Fig. 4. These two four-colorings ofp4m are described by the same 

color group but must be considered inequivalent. 
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Fig. 5. There are three consistent three-colorings of the half-faces of the pyritohedron with respect to a subgroup of type ram2. In two of 
these, (a) and (b), each face is assigned a single color. 
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problems. Next, we enumerate the consistent colorings 
of the face-transitive polyhedra in which each face 
receives a single color. (By duality, this is also an 
enumeration of the consistent colorings of the vertices 
of the vertex-transitive polyhedra.) Just as the problem 
of enumerating the color groups is the problem of 
classifying subgroups, the problem of enumerating 
colored patterns is the problem of classifying the orbits 
of these subgroups. Finally, we briefly discuss the 
literature on colorings. 

Color groups 

The faces of a polyhedron can be divided into 
equivalence classes defined by the property that the 
faces in each class are mapped onto one another by the 
operations of the group. If there is only one class, the 
polyhedron is said to be isohedral or face-transitive. 
(The open and closed face-transitive polyhedra with 
crystallographic symmetry are the simple crystal 
forms.) For simplicity, by 'polyhedron' we will mean 
'face-transitive polyhedron' throughout this paper. 

The faces of a polyhedron with symmetry group G 
form an orbit for G. We recall that an orbit for a 
symmetry group is a set X of points, faces or other 
units such that 

(i) the operations in the group map X onto itself, and 
(ii) for any two units x i and xj in X, there is a 

symmetry operation g in the group such that gx i = Xr 
That is, all the elements of X are equivalent and the 
group acts transitively on X. 

The subgroup of G which maps a given unit x i onto 
itself is called the site-symmetry group or stabilizer of 
x i, S(xi). For example, the stabilizer of a cube face is 
4m, the stabilizer of a face of a pyritohedron is m, and 
the stabilizer of a face of a gyroid is simply the identity 
operation 1. It is easy to show that if gx i = xj, then 
every operation in the left coset gS(xi) also maps x i 

m ! / 
- -  l t l  - -  

Fig. 6. The faces of the pyritohedron are an orbit for the group m3; 
the stabilizer S is of type m. Starting with one face x~ chosen 
arbitrarily, we label it with the elements of S(x~) and then label 
the other faces with the operations in the left cosets of S(x~). 
(Thus the face x~ is labeled {1,m}, where 1 is the identity element 
of the group m3.) 
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onto xj, and every operation which does this belongs to 
that coset. (Throughout this paper group multiplication 
is done from right to left.) Further, S(xj) = gS(xi)g-1; 
the stabilizers of the units of X are all conjugate. In this 
sense, we will speak of the stabilizer S of X when it is 
not necessary to specify a particular unit. If S contains 
only the identity operation 1, then X is said to be a 
generic or free orbit. IXI, the number of units in X, is 
equal to IGI/ISl; i f X  is a free orbit, then IXI = IGI. 
Thus the six faces of a cube form an orbit for m3m, in 
accordance with the fact that Im3ml/14ml = 48/8 = 6. 
The gyroid's twenty-four faces form a free orbit for the 
group 432. 

It is helpful to indicate the relation between a group 
G and an orbit X by the following device: starting with 
any one of X 's  units Xl, we label each of the others with 
the S operations of G which map x~ onto it (Fig. 6). 
This labeling gives us an explicit diagram of the action 
of G on X. 

With these concepts in mind, the van der Waerden- 
Burckhardt (1961) theory of color groups can be 
briefly described by the following three statements. Let 
G be a symmetry group and let X be a free orbit for G. 

1. Assume that X has been consistently colored with 
a finite number k of colors. The set of operations in G 
which map a given single-color set of units onto itself is 
a subgroup H of G; if we label the units so that x~ is 
included in this set, then the entire set is labeled with the 
operations H, that is, it is the set {hx~, h ~ H}, or more 
briefly Hx~. An operation g which is not in H maps this 
set onto a set of units of some other color; those units 
are labeled with the operations gH. Thus each color is 
associated with a left coset of H and the number of 
colors is equal to the index of H in G. 

2. Each operation g in G is associated with the color 
permutation 

H g2H ... gkHH)" 
gH ggEH ggk 

The sets of pairs {(symmetry operation, color per- 
mutation)} is a group, called the color group G(H). 

3. Each subgroup H of G determines a color group 
as in (2), and also a consistent coloring of X: choose any 
unit of X to be x 1, find its images under H, and give this 
set of units color 1. Then label the remaining units with 
the operations in each of H's  k - 1 left cosets and 
assign them colors 2, 3, ..., k. 

As we pointed out in the introduction, to apply this 
coloring procedure directly to an orbit which is not free, 
such as the set of faces of most polyhedra, we are 
forced to subdivide the units into asymmetric sectors 
which will, in general, receive different colors. Let us 
say that a polyhedron P with symmetry group G 
admits the color group G(H) if its faces can be 
G(H)-colored in such a way that each face receives a 
single color. Our first problem is to decide which 
polyhedra admit which color groups. 
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Colored polyhedra 

The symmetry properties of a polyhedron are charac- 
terized by (i) its symmetry group G, (ii) the stabilizer S 
of its faces and (iii) the role of S in the structure of G. 
Thus we will consider two polyhedra P and P* to 
belong to the same symmetry type if they have the 
same symmetry group G and if there is an affine 
automorphism a of G which maps the stabilizers of the 
faces of P onto the stabilizers of the faces of P*. [This 
does not imply that P and P* are the 'same': for 
example, the tristetrahedron and the deltohedron are 
equivalent under this classification (Fig. 7), although 
their combinatorial-topological properties are very 
different.] The face-transitive polyhedra are listed in 
column 1 of Table 1. In column 2 we list their 
symmetry groups G and the face-transitive subgroups 
G' of G; the latter are hsted in order to include the 
crystallographically important case when the 'true' 
symmetry group is a subgroup of the symmetry group 
of the form. In column 3 we list the stabilizers of the 
faces with respect to G and G'. The corresponding 
symmetry type is listed in column 4, denoted by the 
symbols used by Gr/inbaum & Shephard (1981a,b)in 
their enumeration of the types of spherical patterns. 

We are now ready to answer the question posed at 
the end of the last section. In Fig. 5, we noticed that in 
(a) and (b) the two colors of each face of the 
pyritohedron are the same, but in (c) they are different. 
In all three cases, H, the subgroup fixing color 1, is the 
same and of type mm2; the stabilizers of the faces of 
the pyritohedron are, as we noted earlier, o.f type m. In 
Figs. 5 (a) and (b) the stabilizers of the faces with color 

Fig. 7. The tristetrahedron and the deltohedron have the same 
symmetry group and stabilizer, and their faces can be matched in 
the required way. Thus they are of the same symmetry type. 

1 are subgroups of H; clearly this is necessary in order 
for the faces to have a single color. By inspection, we 
see that this requirement is not met in Fig. 5(c): the 
stabilizer of a face, one of whose colors is 1, is a 
subgroup for which the mirror plane is perpendicular to 
those in H. In general, in order for each face of a 
polyhedron P to have a single color, all the labels 
assigned to some face Xg must belong to H. This will be 
the case if S(xg) c_ H. If there is no such face x i, then 
some of the operations in S(x i) will always belong to 
different cosets of H and hence xg will have more than 
one color. Thus we have 

Theorem 1. A polyhedron P with symmetry group G 
admits the color group G(H) if and only if S(x i) ~_ H 
for some face x i of P. 

Further, we prove 
Theorem 2. Polyhedra of the same symmetry type 

admit the same color groups. 
To see this, let us assume that P and P* are 

polyhedra of the same symmetry type, and that P 
admits the color group G(H). Then there is a face xi of 
P such that S(x i) ~ H. By definition, there is an affine 
automorphism tx of G which maps S(x i) onto S(x~'), 
where x~' is some face of P*; since a maps subgroups to 
subgroups it maps H onto some subgroup H* which 
contains S(x~). Since the color groups G(H) and 
G(H*) are equivalent (see the following section), the 
theorem is proved. 

Enumerating colored polyhedra 

We now are in a position to consider the question of 
enumeration. Suppose that a polyhedron P admits the 
color group G(H). When are two G(H) colorings of P 
equivalent, and when are they distinct? 

In the first place, we will assume that in order to be 
equivalent the two colorings must be described by the 
'same' color group, that is, by equivalent color groups. 
The general consensus in the literature seems to be that 
two color groups GI(H 1) and G2(H2) should be 
considered equivalent if there is an affine isomorphism 
between G1 and G 2 under which H 1 and H 2 are also 
mapped onto one another; we will adopt this definition. 
For a detailed discussion see Engel & Senechal (1983). 
Thus the symbol G(H) represents an equivalence class 
of color groups, although it is sometimes convenient to 
think of it as denoting a particular representative of this 
class. If G(H~) and G(H 2) are equivalent, we will also 
say that H~ and H 2 are equivalent. 

Second, in order to determine how many distinct 
G(H) colorings of P are possible, we must define 
e_quivalence for colorings: two G(H) colorings of P, say 
P and P, are equivalent colorings if P can be obtained 
from P by recoloring the faces of P in such a way that 
all the faces of P with one color are again assigned a 
single color, and faces with distinct colors remain 
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Table 1. Theface-transitivepolyhedra 

In column 1 we list the polyhedra (including the open forms) whose 
symmetry groups act transitively on their faces; by duality, one can 
deduce the list of  polyhedra whose symmetry groups act transitively 
on their vertices. In column 2 we list first the symmetry group G of 
the polyhedron or form, and then, when G is finite, its face-transitive 
subgroups G*; their stabilizers are listed in column 3. The corres- 
ponding spherical pattern sp, numbered as by Griinbaum & 
Shephard (198 lb), is given in column 4. Part A lists the open forms, 
part B the polyhedra with principal axes, and part C the polyhedra 
with cubic and icosahedral symmetry.  We use the abbreviated 
Hermann-Mauguin  notation for symmetry groups, except that we 
prefer rotatory-reflection, q, to rotatory-inversion, 0. Following 
Harker (1976), we use asterisks, and in some cases primes, to 
distinguish inequivalent operations with the same symbol. Thus m* 
indicates reflection in a plane not perpendicular to a principal axis, 
while 2* indicates a twofold rotation whose axis does not coincide 
with an axis of higher order, when one is present in the group. In 
columns 2, 3 and 4, q may take any positive integral values, unless 
otherwise indicated. The range of  q for any subgroup G* is usually 
the same as for the group G, so it is stated only once, unless 
necessary. 

G and G* S sp 

A. Open forms 
Pedion ~m ~m 3oo 
Sphenoid mm'2 m' 2q, q = 2 

m 1 lq, q =  1 
2 1 4q, q = 2  

q-gonal pyramid qm m 2q, q > 3 
q 1 4q 

Di-q-gonal pyramid qm 1 lq, q > 2 
(a) Pinacoid ~ / m  m* ~m* 10 
(b) q-gonal prism q/m m* mm*2 9q, q > 3 

q/m m 15q 
qm* m* 2q 
q I 4q 
q2 2 12q 
for even q: 
(~q)m* 1 l(~q) 
(~q)/m m* m 8(~q) 
(~q) 2 1 11 (~) 
4m* m* 18(~q) 
4m* 2 19(~/) 
4 1 21(~q) 

Di-q-gonal prism q/m m* m 8q, q >_ 2 
~m* 1 17q 
qm* 1 lq 
q2* 1 1 lq 

B. Closed polyhedra with principal axes 
q-gonal dipyramid q/m m* m* 7q, q > 3 

q2 1 1 lq 
q/m 1 14q 
~m*, q even 1 17q 
~q/m m*, 1 6(~) 
q even 

Di-q-gonal dipyramid q/m m* 1 6q, q > 2 
(a) Rhombic disphenoid 222 1 1 lq, q = 2 
(b) Tetragonal disphenoid ~m m 18q, q = 2 

222 1 1 lq, q = 2 
1 21q, q = 2  

Scalenohedron ffm 1 17q, q > 2 
Trapezohedron q2 I I lq, q > 3 
Rhombohedron, ~m m 18q, q = 3, 
trapezohedron q > 4 

q2 1 1 lq 
1 21q 

distinct. Then the single-color sets of faces in one 
coloring are geometrically congruent to those in any 
equivalent coloring, although the colors themselves 
may differ. It is not difficult to show (Senechal, 1983) 

Table 1 (cont.) 

G and G* S sp 

C. Polyhedra with cubic and isosahedral symmetry 
Hextetrahedron 2~3m 1 23 
Tristetrahedron, 2~3m m 24 
deltohedran 23 1 27 
Tetrahedron 2~3m 3m 26 

222 1 1 lq, q = 2 
23 3 29 
2~m m 18q, q = 2 
2~ 1 21q, q =  2 

Tetartoid 23 1 27 
Hexoctahedron m3m* 1 30 
Tetrahexahedron m3m* m 31 

432 1 36 
~3m 1 23 

Trisoctahedron, m3m* m* 32 
trapezohedron 432 1 36 

m3 1 40 
Rhombic dodecahedron m3m* mm*2 33 

2~3m m 24 
23 1 27 
432 2 37 
m3 m 41 

Octahedron m3m* 3m* 34 
mmm 1 6q, q = 2 
4/m mm* m* 7q, q = 4 
42 1 I lq, q = 4 
4/m 1 14q, q = 4 
2~m 1 17q, q = 2 
432 3 38 
m3 3 43 

Cube m3m* 4m 35 
32 1 1 lq, q = 3 
~m* m* 18q, q = 3 

1 21q, q = 3  
2~3m* 2m'm* 25 
23 2 28 
432 4 39 
m3 mm2 42 

Gyroid 432 1 36 
Diploid m3 1 40 
Pyritohedron m 3 m 41 

23 1 27 
Hexakis icosahedron 53m 1 44 
Pentakis dodecahedron, 53m m 45 
triakis icosahedron, 532 1 49 
trapezoidal hexacontahedron 
Rhombic triacontahedron 53m mm2 46 

532 2 50 
Icosahedron 53m 3m 47 

532 3 51 
Pentagonal dodecahedron 53m 5m 48 

532 5 52 
m3 m 41 
23 1 27 

Pentagonal 532 1 49 
hexacontahedron 

that in fact this congruence is achieved by a symmetry 
operation in G. 

Let H be a subgroup of G which is fixed for the 
moment. In each G(H) coloring of P we can locate a 
set of faces, all with the same color, which is an orbit 
for H, so we have a criterion for inequivalence: distinct 
colorings correspond to incongruent H orbits. An orbit 
of H is determined by the choice of the initial face xl of 
P on which the operations of H are performed. Let us 
first assume that the set X of faces is a free orbit, and 
that an H orbit, obtained by applying H to x 1, has been 
located. If now we choose a different starting face 
x2 = gx~, which is not in the first orbit, we obtain a 
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second orbit, disjoint from the first, by applying the 
operations in H to x 2, Thus this second orbit consists of 
the faces labeled with the operations in Hg, a right 
coset of H. If the two orbits Hx~ and Hgx I are 
congruent, then there is a g '  in G which maps H onto 
Hg: g ' H  = Hg. Choosing g instead of g'  as the 
representative of the left coset, we see that the orbit 
Hgxl is congruent to the orbit Hx~ if and only if 
gHg -1 = H. It follows that the number of incongruent 
free orbits, and hence distinct colorings, is equal to the 
number of different conjugates of H (including H 
itself). For example, comparing Fig. 5 with Fig. 6, we 
see that the sets of half-faces labeled with color 1 in 
Figs. 5(a), (b) and (c) are the three incongruent orbits 
of the subgroup mm2. 

Still letting X be a free orbit, we now count the 
colorings defined by subgroups equivalent to H. We 
obtain no new colorings from conjugate subgroups 
since every G(H) coloring is at the same time a 
G(gHg -1) coloring. To see this, we note that gH = 
(gHg -~) g and hence the single-color set of units labeled 
with the operations of the left coset gH is precisely the 
orbit of gHg -1 which contains the unit gx~. Further, 
any other single-color set gi Hx~ of the G(H) coloring is 
at the same time the single-color set gig-i(gHg-~)gx~ 
of the G(gHg -~) coloring. See also Senechal (1975). 
On the other hand, if H~ and H z are equivalent but do 
not belong to the same conjugacy class, then the 
colorings they define are distinct, and since H I and H 2 
have the same number of conjugates there are the same 
number of colorings in each case. The only classes of 
point groups in which such subgroups occur are qm, 
q2, q/mm and (2q)m, for even q, and when they do 
occur the number of conjugacy classes is two (Fig. 8). 
[For qm, q2 and (2q)m these are rm or r2 subgroups, 
where q/r is even if r < q; for q/mm there are also two 
types of r/mm subgroups if q/r is even, two types of ~m 
subgroups if q/2 is even, and two types of t~m 
subgroups if q/(2r) is odd.] This completes the case of 
free orbits. 

As we have seen, if the orbit is not free, then H 
defines a coloring of P if and only if S(x  i) c_ H for some 
face x i. The enumeration proceeds as described above, 
but by taking this requirement into account we delete 

Fig. 8. The group 4m, shown here in stereographic projection, has 
two equivalent but nonconjugate mm subgroups. These groups 
define distinct colorings. 

those colorings in which more than one color is 
assigned to a single face, such as Fig. 5(c). Ifx~ = gxl is 
a face in an orbit of H labeled with the operations Hg 
then S(xi) = gS(xOg -a ~ H or alternatively S(xl) 
g-1Hg. Thus, to enumerate the colorings we count the 
number of conjugates of H which contain S(xO. Again, 
subgroups conjugate to H define the same colorings 
while equivalent but nonconjugate subgroups give an 
equal number of distinct colorings if the condition 
S(xi) c H is satisfied. (In fact, the di-q-gonal prism is 
the only type of polyhedron with nontrivial S which 
admits colorings defined by two conjugacy classes of 
equivalent subgroups H.) 

We can summarize the above discussion succinctly: 
Theorem 3. The number of G(H) colorings of a 

polyhedron P is equal to the number of equivalent 
subgroups H of G which contain the stabilizer S of a 
given face x 1 of P. 

In Table 2, we enumerate the admissible colorings of 
each of the polyhedral symmetry types, listing for each 
pair G and S the subgroups which define the classes of 
admissible color groups, together with the number of 
colors and the number of inequivalent colorings. 

Comments on the literature 

We conclude with a brief review of some of the 
literature which deals with colorings. Since van der 
Waerden & Burckhardt's (1961) fundamental paper 
first appeared, most authors have defined color groups 
in the way we have here, that is, a color is identified 
with each left coset of a subgroup H of G. It should be 
noted, however, that the identification of colors with 
cosets and, accordingly, symmetry operations with 
color permutations, appeared earlier in a paper by 
Wittke & Garrido (1959). These authors identified the 
colors with the right cosets of H instead of with its left 
cosets, and thus the colorings in their diagrams were 
inconsistent. A discussion of other early efforts can be 
found in Senechal (1975). The first author to consider 
the problem of enumerating colorings was Harker 
(1976), who defined a diamorph of a coloring to be a 
different arrangement of the same colors producing the 
same color group. This is a much finer classification 
than ours but is not designed to distinguish those 
colorings in which the units of a pattern receive a single 
color from those in which they do not. MacDonald & 
Street (1978) gave the definition of equivalence for 
colorings that we have used here, and pointed out that 
the number of colorings of a free orbit will be greater 
than the number of conjugates of H in G, if there are 
subgroups of G equivalent to H but not conjugate to it. 
However, they did not carry out any complete 
enumerations. Colored plane tilings are discussed by 
Senechal (1979); a geometric approach to their 
classification is proposed by Grfinbaum & Shephard 
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Table 2. Colorings of the spherical patterns 
sp G 

In column 1 the symmetry-pattern types sp are numbered according 38 432 
to GriJnbaum & Shephard (1981b). In columns 2, 3 and 4, we list 

39 432 
the symmetry group G of the pattern, its stabilizer S, and the 40 m3 
number of motifs I X I. In column 5 we list all the proper subgroups 41 m3 
H of G which contain S(x) for some x E X, together with the 
number of colors k = [G:H] and the number c of inequivalent 42 m3 
colorings. The notation is the same as in Table 1. [Thus for sp 28 43 m3 
the entry (222; 3,1) means that the subgroup 222 contains the 44 53m 
stabilizer of a face, and this subgroup defines a single coloring with 45 53m 
three colors.] The letter r always represents a proper divisor of q, or 
the integer I, so q/r is always an integer; similarly, q/2 and r/2 are 
defined only for even q and r. When S is trivial, all subgroups H 46 53m 
define admissible color groups. We have not computed k and c for 
these cases; their determination is straightforward (see text). For a 47 53m 
list of the subgroups of the crystallographic and icosahedral 48 53m 
groups, the reader is referred to Harker (1976). 49 532 

50 532 
sp G S IXI (H:k,c) 

lq qm 1 2q all H 
2q qm m q (rm; q/r, 1) 
3q qm qm 1 
3oo oom oom 1 
4q q I q all H 
5q q q 1 
6q q/mm* 1 4q allH 
7q q/m m* m* 2q (rim m*;q/r,1); (qm*; 2,1); 

(rm*; 2q/r,1); (~m*; 2,1), q even; 
(Pm*; 2q/r, 1), q/r odd, q even, r even 

8q q/m m* m 2q (rim m*; q/r, 1 if q/r odd, 2 if 
q/reven), r > 1; (q/m; 2,1); (r/m; 
2q/r,1); (ram*2*; q,q) 

9q q/m m* mm*2* q (rim m*;q/r,1) 
10q q/m m* qm* 2 (qm*; 2,1) 
10oo oo/m m* oom* 2 (oom*; 2,1) 
l l q  q2* 1 2q allH 
12q q2* 2* q (r2*; q/r,l) 
13q q2* q 2 (q; 2,1) 
14q q/m 1 2q allH 
15q q/m m q (r/m; q/r,l) 
16q q/m q 2 (q; 2,1) 
17q (~q)m 1 4q a l ln  
18q (2~)m m 2q (qm; 2,1); (rm: lq/r,1); ((~r)m, 

q/r,1), q/r odd; (m; 2q, l) 
19q (2~)m 2 2q (q2;2,1); (r2; 2q/r,l); 

((~r)m; q/r,l), q/r odd; (2; 2q,1) 
20q (2q)m qm 2 (qm; 2,1) 
21q (2~q) 1 2q all H 
22q (2q) q 2 (q; 2,1) 
23 4-3m 1 24 all H 
24 4~3~n m 12 (3m; 4,2); (2Ira; 3,1); (ram2; 6,1); 

(m; 12,1) 
25 2~3m ram2 6 (2~m; 3,1); (ram2; 6,1) 
26 213m 3m 4 (3m; 4,1) 
27 23, 1 12 all H 
28 23 2 6 (222; 3,1); (2; 6,1) 
29 23 3 4 (3; 4,1) 
30 m3m* 1 48 all H 
31 m3m* m 24 (m3; 2,1); (4/m m*; 3,3); (2(m; 6,2); 

(mmm; 6,1); (4ram*; 6,2); 
(ram*m*; 6,1); (ram2; 12,2); 
(ram*2*; 12,2); (4/m; 6,1); 
(2/m; 12,1); (m; 24,1) 

32 m3m* m* 24 (~;rn*; 4,2); (2~3m; 2,1); 
(4/m m*; 3,1); (2/m*; 6,1); 
(m'm*2; 12,1); (4m'm; 6,1); 
(ram*m*; 6,1); (ram*2*; 12,1); 
(2*/m*; 12,1); (3m*; 8,2); (m*; 
24,1) 

33 m3m* ram*2* 12 (4/m m; 3,1); (ram*2*; 12,1) 
34 m3m* 3m 8 (2~3m; 2,1), (~m*; 4,1); (3m*; 8,1) 
35 m3m* 4m 6 (4/m m; 3,1); (4m; 6,1) 
36 432 1 24 all H 
37 432 2* 12 (32*; 4,2); (42; 3,1); (22*2*; 6,1); 

(2*; 12,1) 

51 532 
52 532 

Table 2 (cont.) 
S IXI (H:k,c) 

3 8 (32*; 4,1); (3; 8,1) 
4 6 (42; 3,1); (4; 6,1) 
1 24 all H 
m 12 (mmm; 3,1); (mm2; 6,2); (2/m; 6,1); 

(rn; 12,1) 
ram2 6 (mmm; 3,1); (ram2; 6,1) 
3 8 (23; 2,1); (~; 4,1); (3; 8,1) 
I 120 all H 
m 60 (l{~m; 6,2); (5m; 12,2); (m3; 5,1); 

(mmm; 15,1); (ram2; 30,2); (2/m; 
30,1); (~;m; 10,2); (3m; 20,2); 
(m; 60,1) 

mm2 30 (m3; 5,1); (mmm; 15,1); 
(ram2; 30, 1) 

3m 20 (~;m; 10,1); (3m; 20,1) 
5m 12 (l(im; 6,1); (5m; 12,1) 
1 60 all H 
2 30 (222; 15,1); (32; 10,2); (52; 6,2); 

(23; 5,1); (2; 30,1) 
3 20 (32; 10,1); (23; 5,2); (3; 20,1) 
5 12 (52; 6,1); (5; 12,1) 

(1983). Finally, we remark that despite its title, 
Symmetry groups of colored polyhedra and of colored 
simple crystal forms, Kuzhukeev & Koptsik's (1978) 
paper has little relation to the present one, in their treat- 
ment, the faces of the polyhedra are assumed to be 
divided into asymmetric sectors which need not have 
the same color, and hence every color group is 
admissible. 

I would like to thank Branko Grfinbaum, Werner 
Fischer, and especially Rolph Schwarzenberger for 
helpful comments on earlier versions of this paper. 
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